Glucose transporter 4: cycling, compartments and controversies.
نویسندگان
چکیده
Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans-Golgi network and vesicle-associated protein 2-containing vesicles. The coordinated action of phosphatidylinositol 3-kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160-kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4-interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras-related GTP-binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin-sensitive GLUT4 compartment and the precise target of insulin-derived signals remain open for future investigation.
منابع مشابه
Endocytosis, recycling, and regulated exocytosis of glucose transporter 4.
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and ot...
متن کاملBlood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study.
It is generally assumed that there is symmetric distribution of the glucose transporter on the lumenal and ablumenal membranes of the brain capillary endothelial cell that makes up the blood-brain barrier (BBB) in vivo. However, the presence of brain endothelial tight junctions allows for asymmetric distribution of BBB plasma membrane proteins. Glucose transporter isoform 1 (GLUT-1), the princi...
متن کاملInsulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10
Understanding how glucose transporter isoform 4 (GLUT4) redistributes to the plasma membrane during insulin stimulation is a major goal of glucose transporter research. GLUT4 molecules normally reside in numerous intracellular compartments, including specialized storage vesicles and early/recycling endosomes. It is unclear how these diverse compartments respond to insulin stimulation to deliver...
متن کاملDifferential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3-L1 adipocytes.
Insulin and guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) both stimulate glucose transport and translocation of the insulin-responsive glucose transporter 4 (GLUT4) to the plasma membrane in adipocytes. Previous studies suggest that these effects may be mediated by different mechanisms. In this study we have tested the hypothesis that these agonists recruit GLUT4 by distinct trafficking mecha...
متن کاملGlucose Transporter (GLUT-4) Is Targeted to Secretory Granules in Rat Atrial Cardiomyocytes
The insulin-responsive glucose transporter GLUT-4 is found in muscle and fat cells in the trans-Golgi reticulum (TGR) and in an intracellular tubulovesicular compartment, from where it undergoes insulin-dependent movement to the cell surface. To examine the relationship between these GLUT-4-containing compartments and the regulated secretory pathway we have localized GLUT-4 in atrial cardiomyoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2005